
AFRL-SA-AR-TR-10-0335 

[Collaboration Research: An Optimization Framework based on 
Domain Decomposition and Model Reduction] 
Wilcox, Karen 

Massachusetts Institute of 
Technology, 77 Massachusetts 
Avenue, Cambridge, MA 02139 

FEBRUARY 2009 
Final Report 

AIR FORCE RESEARCH LABORATORY 
AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSL 

ARLINGTON, VIRGINIA 22203 
AIR FORCE MATERIEL COMMAND 

20101202166 
l 

Raytheon Company Limited Data Rights 
Data subject to restrictions on cover and Notice page 



 REPORT DOCUMENTATION PAGE  
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction rVL.-oI\-/\j\- 1 TV- I U-U335 
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect t 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 12 
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to con 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
27-02-2009 

2. REPORT TYPE 
Final  Report 

3. DATES COVERED (From - To) 
Ol-Apr-2006   to   30-NOV-2008 

.•> 

4. TITLE AND SUBTITLE 
Collaborative Research: An Optimization Framework based on 

Domain Decomposition and Model Reduction 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 
FA9550-06-'| -£)2T-l 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Willcox, Karen 

5d. PROJECT NUMBER "* K 

5c. TASK NUMBER 

5f. WORK UNIT NUMBER ""»l 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Massachusetts   Institute  of 
Technology/   77  Massachusetts 
Avenue,   Cambridge,   MA  02139 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
USAF,    AFRL 
AF Office  of  Scientific 
875 N.   Randolph Street 
Arlington,   VA 22203 

10. SPONSOR/MONITOR'S ACRONYM(S)       Mf 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Public Release 

m n 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT » 
This collaborative research has developed rigorous mathematical and computational frameworks for ROM generation and the 
use of ROMs in real-time, design, control, and probabilistic applications of relevance to the Air Force. This research has 
provided theoretical analyses and numerical studies for several new/extensions of existing ROM approaches, such as a goal- 
oriented, model-constrained approach, balanced truncation model reduction (BTMR) of descriptor systems, and the integratio, 
of domain decomposition and BTMR for systems with localized nonlinearities. Additionally, several important questions       »' 
related to the design, analysis, efficient computation, and application of ROM were studied. The use of ROMs was 
demonstrated on example applications, including optimal flow control of linearized Navier-Stokes equations, linearized flow 
control of a supersonic diffuser, subsonic compressor blade row unsteady aerodynamics and geometric mistuning, a thermal 
design problem, and nonlinear combustor model dynamics. 

'i 15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION 
OF ABSTRACT 

UU 

18. NUMBER 
OF PAGES 

11 

19a. NAME OF RESPONSIBLE PERSOI ' 
Karen Willcox ti 
19b. TELEPHONE NUMBER (include art* M 
code) *  I 
617-407-8176 

"' 
Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



COLLABORATIVE RESEARCH: AN OPTIMIZATION FRAMEWORK BASED ON 
DOMAIN DECOMPOSITION AND MODEL REDUCTION 

FA9550-06-1-0245, FA9550-06-0271 

Matthias Heinkenschloss 
Department of Computational and Applied Mathematics 

Rice University, Houston, Texas 

Danny C. Sorensen 
Department of Computational and Applied Mathematics 

Rice University, Houston, Texas 

Karen Willcox 
Department of Aeronautics & Astronautics 

Massachusetts Institute of Technology 

Abstract 

Reduced order modeling (ROM) seeks to systematically extract the important dynamics from a 
high fidelity, high dimensional dynamical system such that outputs of interest generated by the 
high fidelity simulation and the ROM over a range of input parameters are within user-specified 
bounds. ROM is important in real-time applications, design, control, and probabilistic analyses, 
where outputs of interest need to be evaluated quickly for various input parameters. 

This collaborative research has developed rigorous mathematical and computational frame- 
works for ROM generation and the use of ROMs in real-time, design, control, and probabilistic 
applications of relevance to the Air Force. This research has provided theoretical analyses and nu- 
merical studies for several new/extensions of existing ROM approaches, such as a goal-oriented, 
model-constrained approach, balanced truncation model reduction (BTMR) of descriptor systems, 
and the integration of domain decomposition and BTMR for systems with localized nonlinearities. 
Additionally, several important questions related to the design, analysis, efficient computation, and 
application of ROM were studied. The use of ROMs was demonstrated on example applications, 
including optimal flow control of linearized Navier-Stokes equations, linearized flow control of a 
supersonic diffuser, subsonic compressor blade row unsteady aerodynamics and geometric mistun- 
ing, a thermal design problem, and nonlinear combustor model dynamics. 



1 Introduction 

With the advent of efficient algorithms and high performance computers, the use of high-fidelity 
numerical simulations of fluid systems is moving from single-run calculations that explore flow 
physics towards multi-run engineering optimization calculations and probabilistic analyses. These 
studies require the repeated numerical simulation of a complex system to determine outputs of 
interest for varying design/control/input parameters. 

Reduced order modeling seeks to systematically extract the important dynamics from a high 
fidelity dynamical system, involving a huge number of degrees of freedom, in such a way that the 
error between outputs of interest generated by the costly high fidelity simulation and the inexpen- 
sive low dimensional reduced order model (ROM) over a range of input parameters is below a 
user-specified tolerance. 

Although there has been gratifying progress in design and analysis of ROM methods (see, 
e-g-> [3]) and the application of ROM to aerospace systems (see e.g., [16]), the design of ROM 
approaches, derivation of error bounds, and the efficient computational implementation of ROM 
approaches for systems with relevance to Air Force applications pose many challenges. This col- 
laborative research has successfully tackled several important theoretical and algorithmic issues 
related to the design, analysis, and efficient computation of ROM for problem classes which are 
important in Air Force applications. Furthermore, the use of ROMs was demonstrated on several 
example applications with relevance to the Air Force, including optimal flow control of linearized 
Navier-Stokes equations, linearized flow control of a supersonic diffuser, subsonic compressor 
blade row unsteady aerodynamics and geometric mistuning, a thermal design problem, and nonlin- 
ear combustor model dynamics. The techniques developed in this research have also been applied 
to reduced order modeling of nonlinear systems arising in the computational simulation of large 
neuron systems. 

2 Accomplishments 

This project has considered projection based model reduction methods. Abstractly the original 
system (typically a discretized system of partial differential equations) can be written as 

y(t)=f(y(t),u,t) *€(0,r), da) 
z(t)=g(y(t),u,t) te(0,T), (lb) 

where y(t) G RN is the system state (y(t) are, for example, velocities and pressure at time t), u are 
the possibly time dependent inputs (design variables, controls, uncertain system parameters), and 
z(t) e M.k are the outputs of interest. We seek a reduced order model of he form 

y[t) = WTf(1^y\t),u,t) f€(0,r), (2a) 
z(t)=8(Vy(t)(t)iU,t) te(0,T), (2b) 

where y[t) £ R" is the reduced system state, n-^N. As before, u are the inputs and z{t) G R* are 
the outputs of interest, which are now generated via a reduced state equation (2a). The matrices 
V, <W e RNxn satisfy WTV = I. 



This research has addressed several important questions related to the computation of the pro- 
jection matrices 1/, 'W e RNxn, estimates for the error \\z-z\\ between outputs of the full and the 
reduced order model, and fast computation of reduced order models for nonlinear models. Specif- 
ically, this research investigated a goal-oriented, model-constrained approach, balanced truncation 
model reduction (BTMR) of descriptor systems, and the integration of domain decomposition and 
BTMR for systems with localized nonlinearities. Several important questions related to the design, 
analysis, efficient computation, and application of ROM in the context of applications of relevance 
to Air Force were studied. 

Furthermore, the use of ROMs was demonstrated on several test problems which are relevant 
for Air Force applications, including optimal flow control of linearized Navier-Stokes equations, 
linearized flow control of a supersonic diffuser, subsonic compressor blade row unsteady aero- 
dynamics and geometric mistuning, a thermal design problem, and nonlinear combustor model 
dynamics. The techniques developed in this research have also been applied to reduced order 
modeling of nonlinear systems arising in the computational simulation of large neuron systems. 

The findings of this research are described below. Additional details and references may be 
found in the papers [2, 5, 6, 7, 8, 12, 13, 14, 15, 18, 19] and theses [4, 9, 10, 17]. 

2.1   Balanced Truncation Model Reduction for the Linearized Navier-Stokes 
Equations 

Balanced Truncation Model Reduction (BTMR) is a particular model reduction method that pre- 
serves asymptotic stability and also provides an error bound on the discrepancy between the outputs 
of the full and reduced order system. Unfortunately, the vast majority of papers on BTMR apply 
this technique to dynamical systems of ordinary differential equations, but are not directly appli- 
cable to dynamical systems governed by incompressible flows, which lead to large-scale system of 
differential algebraic equations. 

full 22K dof reduced 15 dof 
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Figure 1: Left plot: Time response for the full order model (circles) and for the reduced order model 
(solid line). Right plot: Velocities generated with the 22K dof full order model (left column) and 
with the 15 dof reduced order model (right column) atf = l,3,4,5,6 (top to bottom). 

The work [ 12,17] describes an extention of BTMR to a class of differential algebraic dynamical 



systems including, e.g., linearized Navier-Stokes equations, linearized around steady flow. The 
procedure in [12,17] can serve as a template for handling numerous other similar problems arising 
from CFD. The major advantages of this approach are that it operates on the original equations 
and not the projected ones, that it considerably reduces storage requirements, and that it utilizes 
more straightforward linear algebra techniques based upon saddle point solvers that are most likely 
already available to a user. Finally, the approach in [12, 17] produces reduced order models with 
guaranteed error bounds. 

To illustrate the last point, the linearized Navier-Stokes equations in a backward facing step 
domain is considered. The inputs are suction/blowing controls applied on the inflow and backward 
facing step boundary, the output of interest is the integrated vorticity in the region behind the 
backward facing step. Figure 1 shows an excellent agreement between the time response of the 
full order model and of the reduced order model for an arbitrary input. This excellent agreement 
is a consequence of the theoretical error bound between the original and reduced order model. 
The right plot Figure 1 shows the velocity profiles generated by the original and the reduced order 
system. There are slight differences, but these are to be expected since the balanced reduction was 
designed generate a reduced order model that faithfully reproduces the integral of vorticity. 

2.2 Numerical Solution of Large Scale Lyapunov Equations Using Inexact 
Linear System Solves 

A computationally expensive part of BTMR is the computation of approximate controllability and 
observability Gramians. If one computes them as approximate solutions of the controllability and 
observability Lyapunov equations via iterative methods, such as the multishift ADI Algorithm, then 
in each iteration one has to solve large scale linear systems resulting from PDE discretizations. For 
very large scale problems, especially 3D problems, these systems have to be solved iteratively. The 
thesis [17] gives a detailed analysis of the impact of these iterative, hence inexact linear system 
solves on the convergence of the ADI Algorithm as well as on the quality of the computed solution. 
Inexact linear system solves have little impact on the convergence behavior as well as on the quality 
of the computed solution, provided the stopping criteria for the linear system solves are sufficiently 
fine relative to the ADI convergence rate and stopping tolerance. 

2.3 Coupling with Local Nonlinearities 

BTMR is one of the very few model reduction techniques for which error bounds between the 
input-output map of the full and reduced order model are available. Unfortunately, these are only 
available for linear time invariant systems. In this research we have extended BTMR to systems 
with spatially localized nonlinearities [17, 18]. Domain decomposition techniques are used to 
divide the problem into linear subproblems and small nonlinear subproblems. It also identifies 
interface conditions between the linear and the nonlinear subdomains. BTMR is applied to the 
linear subproblems with inputs and outputs determined by the original in- and outputs as well as 
the interface conditions between the subproblems. Figure 2 shows the result of our approach for 
a PDE that couples the nonlinear Burgers equation on [—1,1] to the heat equation on [—10,-1], 



[1,10]. The linear parts are reduced and joined with the nonlinear Burgers equation. The plots 
show an excellent agreement between full and reduced order models. 

Figure 2: Left: Solution of the reduced order discretized PDE. Center: Error between the solution 
of the discretized PDE and the reduced order system. Right: Outputs 1, 2, 3 of the full order system 
are given by *, o and •. Outputs 1, 2, 3 of the reduced order system are given by dotted, dashed 
and solid lines. 

The thesis contains [17] contains additional results for other test problems. 

2.4   Model Reduction for Large-Scale Systems with High-Dimensional Para- 
metric Input Space 

The computation of projection matrices V, <W G RNxn, such that the error \\z-z\\ between out- 
puts of the full and the reduced order model is minimized over a range of system inputs u can 
be viewed as an optimization problem. The approximate solution of this optimization problem 
is very challenging, especially for parametric input spaces of high dimension. We have proposed 
a model-constrained adaptive sampling methodology for reduction of large-scale systems with 
high-dimensional parametric input spaces. Our model reduction method uses a reduced basis ap- 
proach, which requires the computation of high-fidelity solutions at a number of sample points 
throughout the parametric input space. The papers [4, 8] pose the task of determining appro- 
priate sample points as a partial differential equation (PDE) - constrained optimization problem, 
which is implemented using an efficient adaptive algorithm that scales well to systems with a large 
number of parameters. For a heat transfer optimal design application with 18,000 states, the ap- 
proach is demonstrated for parametric input spaces up to dimension 21 (see [8]). Sampling such 
high-dimensional input spaces with statistically-based sampling methods is, in general, a computa- 
tionally prohibitive proposition; the model-constrained sampling developed as pan of this research 
yields reduced models with errors three to four orders of magnitude lower than those obtained 
using standard methods, such as Latin hypercube and log-random sampling. 



CFD Reduced 

Model size 103,008 201 
Offline cost - 2.8 hours 
Online 501.1 hours 0.21 hours 
Blade 1 mean -1.8572 -1.8573 
Blade 1 variance 2.687e-4 2.682e-4 
Blade 2 mean -1.8581 -1.8580 
Blade 2 variance 2.797e-4 2.799e-4 

Table 1: Linearized CFD model and reduced-order model MCS results. Work per cycle is predicted 
for blade plunging motion at an interblade phase angle of 180° for 10,000 randomly selected blade 
geometries. 

The method has been applied to derive efficient reduced-order models for probabilistic analysis 
of the effects of blade geometry variation for a two-dimensional model problem governed by the 
Euler equations [5, 6]. The CFD model uses a discontinuous Galerkin formulation, and has 51,504 
states per blade passage. Figure 3 shows the results of a Monte Carlo simulation (MCS) to analyze 
the impact of blade geometry variabilities on the work per cycle (WPC), which is defined as the 
integral of blade motion times the lift force over one unsteady cycle. The case shown considers 
two blades moving in plunging motion with an interblade phase angle of 180°. The same 10,000 
geometries were analyzed using the CFD model and a reduced model of dimension 201. Figure 3 
shows the resulting probability density functions of WPC for the first blade. Table 1 shows that the 
CPU time required to compute the reduced model MCS is a factor of more than 2000 times smaller 
than that required for the CFD MCS. Table 1 also compares the statistics of the two distributions. It 
can be seen that the reduced-order model predicts the mean, variance and shape of the distribution 
of WPC accurately. To further verify the quality of the reduced model, the Kolmogorov-Smirnov 
method is applied to test whether the reduced WPC results and the full WPC results are drawn 
from a same distribution. The results show that the hypothesis that the distribution is the same at a 
5% significance level cannot be rejected. 



(a) Full WPC for Blade 1 (b) Reduced WPC for Blade 1 

Figure 3: Comparison of linearized CFD and reduced-order model predictions of WPC for Blade 
1. MCS results are shown for 10,000 blade geometries. The same geometries were analyzed in 
each case. 

2.5    Efficient Evaluation of Projection Based Reduced Order Models for Non- 
linear Systems 

Methods such as the proper orthogonal decomposition (POD) and the optimization-based approach 
[5, 6]. can be used to compute a reduced basis V = W for nonlinear systems; however, naive 
projection of the governing equations onto the reduced basis can lead to a reduced model that has a 
small number of states but is computationally expensive to solve, since evaluation of the nonlinear 
term 

ftt) ~Vy{t)~f(Vy{t),uj)~yTf(<Vy(t),u,tl 

eR" eR" €RN eR" 

will in general require computations on the large scale (RN). 
This research has combined the model-constrained sampling algorithm described in Section 2.4 

with the Empirical Interpolation Method of [1, 11] for efficient representation of nonlinearities. In 
this approach, the nonlinearities are represented using a coefficient-function approximation that 
enables the development of an efficient offline-online computational procedure where the online 
computational cost is independent of the size of the original large-scale model. 



Figure 4: Comparison of (a) finite element solution and (b) reconstructed solution using the effi- 
cient reduced basis approximation for nonlinear convection-diffusion-reaction problem. 

The nonlinear model reduction methodology was applied to a highly nonlinear combustion 
problem governed by a convection-diffusion-reaction PDE [10]. The reduced basis approximation 
developed for this problem is up to 50,000 times faster to solve than the original high-fidelity 
finite element model with an average relative error in prediction of outputs of interest of 2.5 • 10-6 

over the input parameter space. Figure 4 shows a sample comparison between the solution field 
computed using the efficient reduced basis approximation and the truth finite element solution for 
a random point in the parameter space. The reconstructed field is virtually indistinguishable from 
the original finite element solution. 

Additionally, an alternative view of the Empirical Interpolation Method was developed in [9]. It 
is applicable to fully discretized systems and uses matrix-vector representations of the discretized 
system, rather than the variational form of the PDE and Galerkin discretization. The presentation 
in [9] also provides alternative error bounds for EIM based on matrix analysis. 

Additionally, the nonlinear model reduction based on POD and EIM was applied to a nonlinear 
system arising in the computational modeling of neuron systems. In the first example the voltage 
in a neuron was modeled using the highly nonlinear Hodgkin-Huxley model. The neuron receives 
pulses from three branches. The output of interest is the voltage at a node in the neuron. Figure 5 
shows an excellent agreement between the full order model with roughly N=1200 degrees of free- 
dom and the reduced order mode with n = 30 degrees of freedom. The application of the reduced 
order model is about 10 times faster than the application of the full order model. The spiking 
behavior of the voltage in the neuron is captured by the reduced order model. 



Forked neuron: voltages at node 10 

Figure 5: Full and reduced order modeling of the voltage in a neuron modeled by the nonlinear 
Hodgkin-Huxley equations. The spiking behavior is captured by the reduced order model, which 
can be executed 100 times faster than the full order model. 

Another test uses the FitzHough-Nagumo equations to model a neuron. Figure 6 shows that 
the reduced order model can capture the limit cycle behavior of the original full order model. 

Phase-Space diagram of reduced system(POD=5. EIM=5) Phase-Space diagram of reduced system(POD=S'EIM=5) 

Fu 111024 
• POD5/EIM5 

v(x.t) -0.5    0 

Figure 6: Full and reduced order model of the FitzHough-Nagumo equations. The reduced order 
model captures the limit cycle behavior of the original full order model. 
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